Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Thorax ; 77(1): 65-73, 2022 01.
Article in English | MEDLINE | ID: covidwho-1440837

ABSTRACT

BACKGROUND: Conflicting evidence has emerged regarding the relevance of smoking on risk of COVID-19 and its severity. METHODS: We undertook large-scale observational and Mendelian randomisation (MR) analyses using UK Biobank. Most recent smoking status was determined from primary care records (70.8%) and UK Biobank questionnaire data (29.2%). COVID-19 outcomes were derived from Public Health England SARS-CoV-2 testing data, hospital admissions data, and death certificates (until 18 August 2020). Logistic regression was used to estimate associations between smoking status and confirmed SARS-CoV-2 infection, COVID-19-related hospitalisation, and COVID-19-related death. Inverse variance-weighted MR analyses using established genetic instruments for smoking initiation and smoking heaviness were undertaken (reported per SD increase). RESULTS: There were 421 469 eligible participants, 1649 confirmed infections, 968 COVID-19-related hospitalisations and 444 COVID-19-related deaths. Compared with never-smokers, current smokers had higher risks of hospitalisation (OR 1.80, 95% CI 1.26 to 2.29) and mortality (smoking 1-9/day: OR 2.14, 95% CI 0.87 to 5.24; 10-19/day: OR 5.91, 95% CI 3.66 to 9.54; 20+/day: OR 6.11, 95% CI 3.59 to 10.42). In MR analyses of 281 105 White British participants, genetically predicted propensity to initiate smoking was associated with higher risks of infection (OR 1.45, 95% CI 1.10 to 1.91) and hospitalisation (OR 1.60, 95% CI 1.13 to 2.27). Genetically predicted higher number of cigarettes smoked per day was associated with higher risks of all outcomes (infection OR 2.51, 95% CI 1.20 to 5.24; hospitalisation OR 5.08, 95% CI 2.04 to 12.66; and death OR 10.02, 95% CI 2.53 to 39.72). INTERPRETATION: Congruent results from two analytical approaches support a causal effect of smoking on risk of severe COVID-19.


Subject(s)
COVID-19 , Biological Specimen Banks , COVID-19 Testing , England , Humans , SARS-CoV-2 , Smoking/adverse effects
2.
Ann Fam Med ; 19(2): 135-140, 2021.
Article in English | MEDLINE | ID: covidwho-1123691

ABSTRACT

The use of big data containing millions of primary care medical records provides an opportunity for rapid research to help inform patient care and policy decisions during the first and subsequent waves of the coronavirus disease 2019 (COVID-19) pandemic. Routinely collected primary care data have previously been used for national pandemic surveillance, quantifying associations between exposures and outcomes, identifying high risk populations, and examining the effects of interventions at scale, but there is no consensus on how to effectively conduct or report these data for COVID-19 research. A COVID-19 primary care database consortium was established in April 2020 and its researchers have ongoing COVID-19 projects in overlapping data sets with over 40 million primary care records in the United Kingdom that are variously linked to public health, secondary care, and vital status records. This consensus agreement is aimed at facilitating transparency and rigor in methodological approaches, and consistency in defining and reporting cases, exposures, confounders, stratification variables, and outcomes in relation to the pharmacoepidemiology of COVID-19. This will facilitate comparison, validation, and meta-analyses of research during and after the pandemic.


Subject(s)
COVID-19/epidemiology , Consensus , Databases, Factual/standards , Medical Records Systems, Computerized/standards , Primary Health Care/organization & administration , Public Health Surveillance , Big Data , COVID-19/diagnosis , Humans , Pharmacoepidemiology , Public Health , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL